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In this paper, a different framework to study weighed networks is introduced. The idea behind this meth-
odology is to consider that each node of the network is an agent that desires to satisfy his/her preferences in an
economic sense. Moreover, the formation of a link between two agents depends on the benefits and costs
associated with this link. Therefore, an edge between two given nodes will arise only if the tradeoff between
satisfaction and cost for building it is jointly positive. Using a computational framework, I intend to show that
depending on the agents’ combination of benefits and costs, some very well known networks can naturally
arise.
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INTRODUCTION

During recent years, one of the main issues of the statis-
tical physics literature has been the study of dynamic sys-
tems such as airports, wireless links, financial institutions,
web pages, and other communication networks and social
networks that may be described by complex weblike
structures.1

On one hand, several models such as small world net-
works �2,3� and free scale networks �4� have been introduced
to specially accommodate the particularities of these struc-
tures that could not be modeled by the seminal well known
random graphs �5�. One should notice that although most
attempts have been devoted to the study of unweighted un-
directed networks like the ones presented in �2,4�, recently
some researchers have also introduced models to deal with
undirected weighted networks �6� and also directed digraphs
�7�.

On the other hand, several measures have been presented
aiming at characterizing the properties of these networked
systems, for instance, characteristic path length �8�, cluster-
ing coefficient �2�, efficiency �9,10�, cost �10�, node degree
�4�, degree correlation �11�, weighted connectivity strength
�6�, and disparity �12�. The main advantage of using these
measures to analyze these complex structures is the ability to
compare different systems with each other and also to de-
velop a unified theory to approach these systems.

This paper focuses particularly on undirected weighted
graphs. It proposes another way based on economic and de-
cision theory to cope with these systems. I suppose that each
node of the network is an agent2 that has his/her own pref-
erences and is striving to maximize them. Since all agents in
the network will interact in order to maximize their prefer-
ences, an edge between two given nodes will arise only if the
tradeoff between satisfaction and cost for building it is
jointly positive. It is assumed that this happens when the
benefit brought to an agent is greater than his own cost and
the cost left by the other agent �which sometimes is zero�.
Therefore, if the benefits brought to the agents by the edge

are positive enough to compensate the cost of construction,
then the edge will exist. This makes sense if one considers
that a connection between agents always brings some kind of
benefits, but the connection sometimes does not exist in a
given network because of the high costs involved.

This tradeoff just presented above is very related to the
formalism developed by �9,10� since the authors also seek a
tradeoff between satisfaction �measured in a very specific
way as efficiency of communication between the nodes� and
cost �also measured in a very specific way�.3

Preferences here are modeled as in economic or decision
theory as utility functions. Specifically, I consider that each
agent has utility function given by

ui�G� = �
∀ j�N�G�/i

aij�wij − cij� ∀ i � G �1�

where N�G� is the set of nodes in a graph �network� G, A
= �aij� is the adjacency matrix, W= �wij� is the matrix of
weights, and C= �cij� is the matrix of costs.

In this context, I am particularly interested in the net-
works that are the solution to the problem

max
A

�
i�N�G�

ui�G� . �2�

1A comprehensive review of this literature may be found in �1�.
2Throughout this paper nodes and agents are synonymous.

3Actually, these ideas were borrowed from engineering and opera-
tions research where researchers have been studying optimal paths
in networks for a long time in order to maximize some measure of
efficiency and/or minimize some measure of cost. These attempts
were responsible for the arising of the seminal problems such as the
minimum spanning tree problem, shortest path problem, maximum
flow problem, etc. A review of these seminal problems may be
found in �13�. However, although in �9,10� there is a similar flavor,
the motivation here is totally different. I am not directly interested
in characterizing the network topology by measuring its properties
and the center of attention here is not necessarily small world net-
works. Moreover, the reference of the “best” network here is not
necessarily the complete network, because it simply may not be the
network that maximizes agent preferences.
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Therefore this paper does not approach the mechanisms of
network formation but it seeks the best topology for a given
set of parameters.

The concept of “efficiency” provided by Eq. �2�, which
focuses on the total “productivity” of the network and how
this allocation is made among individual agents,4 is the same
one used in �13–16� to approach—in a game theoretical
framework—the dynamics of network formation and the re-
lation between the concepts of efficiency �introduced above�
and stability.5

The focus of this paper, differently from �13–16�, is to
provide a computational framework to relate agent prefer-
ences to network topologies. Thus, one has to maximize Eq.
�2� to reach the desired solution.6 One should notice that
since Eq. �2� has been specified as a linear function, this can
be solved as a linear binary programming problem.

BINARY LINEAR PROGRAMMING

Binary linear programming is a problem very well studied
in the field of operations research and there are several meth-
ods to solve it. Unfortunately, however, due to its combina-
torial nature, this problem is not trivially solved. Sometimes
due to its computational cost, the size of the problem is con-
strained or a heuristic method that can provide only a sub-
optimal solution instead of an optimal one is used.

In this paper, since there are no constraints and, in Eq. �1�,
the choices of edges are independent of each other, the solu-
tion of �2� is trivial.7

LATTICES WITH K NEIGHBORS

The arising of a regular network where each node has K
neighbors as a solution of problem �2� is in general possible
only if all the agents have homogeneous preferences with
constant benefits over all agents and a cost that depends only
on some measure of the distance between them �not neces-
sarily physical distance�. In spite of the latter hypothesis be-

ing reasonable in the real world, the former is very hard,
since agents in general have different interests. If the agents
are labeled with ordinal indices from 1 to n, where n is the
number of nodes, without loss of generality, one may sup-
pose in this case that

wij =
K

2 floor�n/2�
�3�

and

cij =
min��i − j�,n − �i − j��

floor�n/2�
�4�

where floor�x� is a function that evaluates the biggest integer
less than x and �x� is the absolute value of x. A typical lattice
that arises in this case when n=20 and K=8 is shown in
Fig. 1.

RANDOM GRAPHS

Random graphs are the opposite of regular lattices with k
neighbors. The agents take random preferences into account.
This specially works if the benefits brought by the connec-
tions between two nodes are random with magnitude given
by a variable p and the cost of building this connection is
constant as, for instance,

wij = p + �ij �5�

and

cij = 1 �6�

where p is the probability of an edge connecting nodes i , j
�N�g� and �ij is a random variable with uniform distribu-
tion in the set �0, 1�. A typical network that arises in this case
when one solves �2� with n=20 and p=0.2 is shown in
Fig. 2.

Again, as in the case of the regular lattices, this kind of
network is not likely to arise in real life due to the constant
cost.

4Considering the simple formulation of Eq. �1�, this notion is also
a Paretian one.

5The definition of a stable network comes from the thought that
agents have the discretion to form or reject links. The formation of
a link requires the consent of both parties involved, but severance
can be done unilaterally. This concept is not considered here.

6This is not the first time that a kind of maximization principle is
used to understand the topology of complex networks. In �17�, cop-
ing with natural drainage networks, it is showed that fractal and
multifractal properties evolve from arbitrary initial conditions by
minimizing the local and global rates of energy expenditure in the
system.

7However, in the general case, the branch and bound technique
�18–21� is usually considered. The basic concept underlying this
technique is to divide and conquer. Since the original “large” prob-
lem is so difficult to solve directly, it is divided into smaller sub-
problems until these problems can be conquered—this is the branch
step. The conquering step is done partially by bounding how good
the best solution in the subset can be and then discarding the subset
if its bound indicates that the optimal solution is not in it. A detailed
review of the methods may be found in �22�.

FIG. 1. �Color online� A typical regular lattice that arises with
n=20 and K=8.

BRIEF REPORTS PHYSICAL REVIEW E 72, 047104 �2005�

047104-2



SMALL WORLDS

If one leaves the two extremes presented above, as in
�2,3�, one may arrive at small world networks. Therefore,
one should now consider a set of agents where with prob-
ability p the connection with another agent in the network
brings a benefit modeled by a random variable �ij, for i , j
�N�g�, with uniform distribution in the set �0, 1�, and where
with probability �1− p� the benefit is given by a constant. The
first mechanism described above models the unusual phe-
nomenon of receiving a large benefit from a distant agent or
not receiving a good benefit from a close agent. The latter
mechanism models the usual phenomenon of receiving a
good benefit from a close agent. Additionally, as in real life
the cost of establishing a connection depends on some mea-
sure of distance.

Mathematically, with probability p

wij = �ij �7�

where �ij, for i , j�N�g�, is a random variable with uniform
distribution in the set �0, 1� and with probability �1− p�

wij =
K

2 floor�n/2�
. �8�

On the other hand,

cij =
min��i − j�,n − �i − j��

floor�n/2�
. �9�

Therefore, the solution of Eq. �2� provides a network with
small world behavior.

As we know, several examples of real networks follow
this kind of behavior. If one analyzes the preferences of the
agents, it makes sense. An agent, for example, receives con-
stant benefits �in average� from being connected to other
agents, but there are some agents who receive lower or big-
ger benefits than the average. In Fig. 3, a typicall small world
that arises in this case when one solves �2� with n=20, K
=8, and p=0.2 is shown.

FREE SCALE NETWORKS

Differently from the other situations considered in this
paper, the phenomenon behind the generation of free scale
networks seems to be a kind of cost hierarchy between the
nodes, i.e., there are some nodes that are less costly than
others. Therefore, some agents will preferentially attach to
these nodes. More specifically, without loss of generality, let
wij and cij be defined as

wij = �ij . �10�

�ij, for i , j�N�g�, is a random variable with uniform distri-
bution in the set �0, 1� and

cij =
i

n
. �11�

In Eq. �11� it was supposed that the nodes with minor indices
are less costly than the others. Hence, these nodes will likely
present the highest degrees in this case. These networks, like
the small world networks, are very likely to be found in real
life. One could think, for instance, of a network of airports.
There are some airports that due to their geographic locations
are less costly than others. In Fig. 4, there is a typical free
scale network that arises when one solves �2� with n=20. In
fact, one may clearly notice the preferential attachment pre-
sented in the network of this figure.

Moreover, simulations with bigger sets like n=1000
yielded networks with �=2.4±0.2 where � is the exponent
of equation P�k��k−� and k is the degree of a node in the
network.

FINAL REMARKS

In this Brief Report, I have presented a computational
framework to characterize complex networks, i.e., one that
may characterize the networks by the preferences of their
agents �nodes�. Actually, although only the four most com-
mon classes of networks have been considered, this frame-

FIG. 2. �Color online� A typical random graph that arises with
n=20 and p=0.2.

FIG. 3. �Color online� A typical small world that arises with n
=20, K=8, and p=0.2.
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work can be used for many classes. In particular, by mixing
the preferences of the agents presented in Eqs. �8�–�11�, one
may find networks with small world behavior and also attach
preferences. Moreover, this methodology also works for
weighted digraphs.

On one hand, linear utility functions, which means that
the agents are indifferent to the risk, were the only class of

utility functions considered here. A question that arises is the
following: What effect is expected in the topology of the
networks if the agents are, for instance, averse to the risk
with concave utility functions.8 Furthermore, no constraint
has been considered in the optimization problem provided by
�2�. What kind of constraints are the agents in the real world
subjected to and what kind of effect will these constraints
cause in the topology of networks?

On the other hand, the matrices W and C here were con-
sidered exogenous, i.e., they were formed prior to the solu-
tion of the problem. It is also possible to suppose that these
matrices have elements that depend on the parameters of a
given iteration of the problem. For instance, the benefit
brought by node i to node j could depend on the number of
nodes that i actually possesses.9 This could be the root for
the study of network formation using this kind of framework.

In summary, this proposed framework may be used to
improve the understanding of these complex networks that
are present everywhere.
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